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Abstract. We consider the piecewise linear multicommodity network flow problem with
the addition of a constraint specifying that the total flow on each arc must be an integer.
This problem has applications in transportation and logistics, where total flows might
represent vehicles or containers filled with different products. We introduce formulations
that exploit this integrality constraint by adapting to our problem a technique known as
discretization that has been used to derive mixed-integer programming models for sev-
eral combinatorial optimization problems. We enhance the discretized models either by
adding valid inequalities derived from cut-set inequalities or by using flow disaggrega-
tion techniques. Since the size of the formulations derived from discretization and flow
disaggregation rapidly increases with problem dimensions, we develop an efficient and
effective Lagrangian relaxation method to compute lower and upper bounds. We perform
computational results on a large set of randomly generated instances that allow us to
compare the relative efficiency of the different modeling alternatives (flow disaggregation
plus addition of cut-set inequalities with or without discretization), when used within the
Lagrangian relaxation approach.
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1. Introduction

We consider the piecewise linear multicommodity net-
work flow problem (PMF) studied in Croxton, Gendron,
and Magnanti (2007). Given a directed network G =
(N,A),withnodeset N, arcset A, suppliesand demands
of multiple commodities at the nodes, and arc capac-
ities, the problem is to find the minimum cost multi-
commodity flow when the objective is the sum of |A|
piecewise linear functions. If we denote x, the total
flow on each arc a, the cost g,(x,) is a piecewise lin-
ear function such that g,(0) = 0. The pieces, or segments,
of the cost function for arc a are represented by the
finite set S5, = {1,2,...,]5,|}. For each arc a, each seg-
ment s € S, has a slope c; > 0 (the linear cost), an inter-
cept fF > 0 (the fixed cost), and lower and upper flow
bounds, b:~! and b (the break points, assumed to be
integers), which satisfy 0 = b < b3 < b < u,, where u,
isthe integer arc capacity. The function is not necessarily
continuous, but we assume it is lower semicontinuous
(ie., g,(x,) <liminf, _,, g,(x;)for any sequence x/ that
approaches x,). We also assumeitisnondecreasing (i.e.,
g.(x,) < g,(x;) whenever x, < x,); this mild assumption
is typically always satisfied in practice. To complete the
problem definition, we let K denote the set of commodi-

RIGHTS LIN KO

629

ties, and d* the vector of size |N| representing supplies
and demands for commodity k: for eachnode i and each
commodity k, d¥ >0 denotes an originnode with integer
supply d¥, d¥ < 0 denotes a destinationnode with integer
demand —df, and d} = 0 denotes a transshipment node.

Applications of the PMF in transportation, logistics,
telecommunications, and production planning (Bala-
krishnan, Magnanti, and Mirchandani 1997; Crainic
2000; Gendron, Crainic, and Frangioni 1999; Magnanti
and Wong 1984; Minoux 1989) often require the flows
to take integer values. In the piecewise linear infeger
multicommodity network flow problem (PMFI) that
we study, we assume that the total flow on each arc,
x,, must be an integer. In applications in transportation
and logistics, total flows might represent vehicles or
containers filled with different products, and therefore
must assume integer values. Often, this integrality con-
straint is ignored when modeling and solving the prob-
lem, and the final continuous solution is used as an
approximation of the optimal integer solution. In this
paper, we adopt a different point of view and explicitly
state the integrality constraint on the total flows. Fur-
thermore, we introduce new formulations for piece-
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wise linear multicommodity network flow problems
that exploit this integrality constraint.

Following Croxton, Gendron, and Magnanti (2007),
we present a mixed-integer programming (MIP) for-
mulation of the PMFI, which we call the basic segment-
based model. In this model, the flow x, on each arc a
is decomposed in two ways, by commodity or by seg-
ment, with x* and x¢ representing the flow of com-
modity k and the flow on segment s, where x; is the
total flow on arc 4 if that flow lies in segment s, and is
0 otherwise. Since g,(x,) is lower semicontinuous and
nondecreasing, if x, = b5~ > 0 then x, = x37%, ie, x,
lies in segment s — 1. Because of the integrality of x,,
this observation implies that if x, lies in segment s,
then I = b5 +1 < x5 < b5 = vi. We also define binary
variables y:, with y5 =1 if x5 > 0, and y: =0 other-
wise. If we denote by t(a) =i and h(a) = j, respectively,
the tail and the head of each arc 2 = (i, j) and by F; =
{a€A|t(a)=i} and B; = {a € A| h(a) =i}, respectively,
the sets of forward and backward arcs incident to node
i € N, the basic segment-based model, denoted BS, can
be expressed as follows:

v(BS)=min > >3 (c;x; + f; 7). {1)

acA se5;

Sixk-Slxk=df, ieN, keK, @

aeF; ach;

Slxk=> x5 =x, integer, a€A, @3)
keK SES,

Ly.<x<vyl, acAses, @
2 ¥i<1, ac4, ©)
s€5,
x¥>0, aeAkeKk, (6)

y:€{0,1}, a€A,s€S,. )

Constraints (2) are the flow balance constraints typ-
ical in a multicommodity network flow formulation.
Constraints (3) define the flow by commodity and by
segment, and also impose integrality requirements on
the total flow on each arc. The multiple choice con-
straints, (5), ensure that we choose at most one segment
variable y; to be equal to 1 on each arc a. The basic
forcing constraints, (4), state that if y5 =0, then x% =0,
but if ¥$ =1, then x must lie between the bounds of
that segment, i.e., b3" +1=1; < x] < v} =b;. Note that,
without the integrality constraint on the total flows,
the lower flow bounds I¢ = b3! + 1 must be replaced
by I = b3~! to obtain a valid model. When the integral-
ity constraint on the total flows is enforced, replacing
I5=b"+1by 5 =b;" would still yield another valid,
but weaker, model (we comment further on this obser-
vation in Section 2.2).

It is well known that the basic segment-based model
provides a weak linear programming (LP) relaxation
bound. To improve this bound, one might add valid
inequalities that can be violated by the solutions to the
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LP relaxation. One approach is to exploit necessary fea-
sibility conditions for the underlying multicommod-
ity network flow structure, giving rise to the so-called
cut-set inequalities, which have been used to strengthen
the LP relaxation bounds of a large number of prob-
lems related to the PMFI (Atamtiirk 2002; Barahona
1996; Bienstock et al. 1998; Bienstock and Giinliik 1996;
Chouman, Crainic, and Gendron 2017; Gabrel, Knippel,
and Minoux 2003; Giinliik 1999; Magnanti, Mirchan-
dani, and Vachani 1993; Ortega and Wolsey 2003; Raack
et al. 2011). Another approach, called flow disaggrega-
tion (Croxton, Gendron, and Magnanti 2007; Frangioni
and Gendron 2009, 2013), consists of defining additional
flow variables that are linked to the other variables
through simple valid inequalities that can improve the
LP relaxation bound. A third approach, which exploits
the integrality of the flows and is the focus of this
paper, is discretization, a technique that has been used
to derive MIP models for several combinatorial opti-
mization problems (Gouveia 1995; Gouveia and Moura
2012; Gouveia and Saldanha da Gama 2006). Discretiza-
tion can be combined with the two other approaches,
addition of cut-setinequalities and flow disaggregation,
with the goal of deriving models that improve the LP
relaxation bounds.

In this paper, we show that the formulation obtained
by discretization can be viewed as having the same
structure as the basic model, except that the segment set
on each arc is replaced by a set of integer points, each
point corresponding to one of the possible values of the
total flow on the arc. For this reason, we denote these
modelsas “point-based” in contrast to “segment-based”
models, such as BS, that use the segment set in the def-
inition of the variables. Following the developments
in Correia, Gouveia, and Saldanha da Gama (2010),
Gouveia and Saldanha da Gama (2006), we derive
valid inequalities from cut-set inequalities for both
the segment-based and the point-based models. Then,
we combine the point-based models with flow dis-
aggregation techniques to derive a model similar to
the so-called extended (segment-based) formulation intro-
duced in Croxton, Gendron, and Magnanti (2007).
Qur main results state that (1) discretization provides
stronger cut-set inequalities than those obtained from
segment-based models; (2) discretization, when com-
bined with flow disaggregation, doesnotimprove on the
LPrelaxation of the extended segment-based model. We
exploit these results by deriving a reformulation of the
problem that combines the strength of both techniques:
cut-setinequalities based ondiscretization and flow dis-
aggregation with segment-based variables. An efficient
Lagrangian relaxation method is developed to com-
pute lower and upper bounds for this reformulation,
but also for the other models introduced in this paper.
Such a method is essential to compute effective bounds
in reasonable time, since the size of the formulations



Downloaded from informs.org by [132.204.243.250] on 11 September 2017, at 10:09 . For personal use only, all rights reserved.

Gendron and Gouveia: Reformulations by Discretization for PMFI
Transportation Science, 2017, vol. 51, no. 2, pp. 629-649, © 2016 INFORMS

derived from discretization and flow disaggregation
rapidly increases with problem dimensions. We per-
form computational results on a large set of randomly
generated instances that allow us to compare the rel-
ative efficiency of the different modeling alternatives
(flow disaggregation, plus addition of cut-set inequali-
ties with or without discretization), when used within
the Lagrangian relaxation approach.

The paper is organized as follows. In Section 2, we
present and compare the different formulations of the
PMEFI, focusing on the relative strength of their LP
relaxations. Then, we present the Lagrangian relax-
ation method. Section 3 describes the Lagrangian dual
optimization procedure that computes lower bounds on
the optimal value of the PMFI, and Section 4 presents
the Lagrangian heuristic approach used to derive upper
bounds. Section 5 analyzes the results of our computa-
tional experiments. We present conclusions and direc-
tions for further research in Section 6. Throughout the
paper, we use the following notation: v(M) denotes the
optimal value of any model M and M denotes the LP
relaxation of any MIP model M; in addition, conv(T)
designates the convex hull of any set T.

2. Reformulations by Discretization

We exploit the integrality constraint on the flows by
defining the point-based model in Section 2.1. In Sec-
tion 2.2, we derive cut-set-based inequalities for both
the segment-based and the point-based models, yield-
ing stronger reformulations of the PMFI. In Section 2.3,
we investigate the combination of flow disaggrega-
tion and discretization. Finally, Section 2.4 summarizes
our main results and presents models that combine
the strength of point-based cut-set inequalities with
segment-based flow disaggregation.

2.1. Point-Based Model

The integrality constraint on the flows implies that x,
is either 0 or can take any integer value g € Q, =
{1,2,...,u,}. Note that we can partition Q, into |S,|
subsets Q% = {b5'+1,b51 +2,...,bi},5s €S, such that
x, € Q: if x, lies in segment s. We now present a refor-
mulation of the PMFI which, instead of decomposing
the flow x, on each arc a by segment, separates the
flow x, by each possible positive integer value g € Q, =
{1,2,...,u,}. Namely, we introduce variables x! which
are equal to g if x, = g, along with binary variables y,
which take value 1 if x, = g, and value 0 otherwise.
We then obtain the following point-based model for
the PMFIL:

min >} > > (csxd + f7yd) ®)

a€A sES, qeQ;
subject to (2), (6), and
D xi= D xi=x, integer, acA, 9)
kekK geQ,
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szqyjf aEquEQaf (10)

Dlyi<l, a€A, (11)
qun’

yie{0,1}, a€cA,q€eQ,. (12)

This model has a structure similar to that of BS,
except that here each “segment” corresponds to a
“point” g, i.e., any possible positive integer value of the
flow x, on each arc 4. To obtain the same structure as
BS, one would simply write down constraints (10) with
two inequalities as follows:

qys<xi<qyi, acA, qeQ,.

Indeed, when [ =b:"! +1 = bS5 = v¢ for each a2 € A and
each s € 5., BS reduces to the point-based model.

Because constraints (10) are expressed as equali-
ties, we can project out the flow variables x! and
remove the integrality constraints on the total flows,
which are redundant, obtaining the following equiva-
lent formulation, called the basic point-based model and
denoted BP:

v(BP)=min > >} > (4¢; + f7)y. (13)

acA se5, geQ;

subject to (2), (6), (11), (12), and

Dxi=>4qyi, acA. (14)

kekK g,

We now compare BP, the LP relaxation of BP, to BS,
the LP relaxation of the basic segment-based model,
(1)~(7). Note that BS can be simplified using the fol-
lowing observation: there always exists an optimal
solution such that x = vy;, for each arc a and seg-
ment s, because otherwise, if x5 < viy$ for some pair
(a,s) in an optimal solution, we could always decrease
y; down to x;/v; and maintain feasibility, as well as
optimality, since f# > 0. As a result, BS can be simpli-
fied by projecting out the x; variables, which yields the
following model that will be subsequently used in our
developments:

v(BS) = min Z Z(vicj + vy (15)

acA s€5,

subject to (2), (5), (6), and

Sxk=Yviy, ac4, (16)

keK SES,

y>0, acA,seS,. 17)

Note that ﬁ, the LP relaxation of BP, and E, the
model defined by (15)-(17), along with (2), (5)—(6), have
similar structures: in BP, points g are used in place
of segments s with their upper flow bounds v° in BS.
Given the similarity of the two LP relaxations, the fol-
lowing proposition is not surprising (a similar result is
proven in Duhamel et al. 2012).
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Proposition 1. v(BP) = v(BS).

Proof. (1) We show that v(BP) > v(BS). Consider an
optimal solution to BP; for any a such that y; >0 for
some ¢ in this optimal solution, we let y3 = (q/v3)y]
whenever g € Q’ for some s (all other variables remain
at the same values). This defines a feasible solution to
BS with objective value v(BP).

(2) We show that v(BP) < v(BS). Consider an optimal
solution to BS; for any a such that %/; > 0 for some s in
this optimal solution, we define y, = y; for g =0} (all
other variables remain at the same values). This defines
a feasible solution to BP with objective value v(BS). O

When |K| = 1, we obtain the single-commodity case
and all of the flow variables in BP can be projected out
using Equations (14). Model BP then reduces to

min 3 > > (g6 + f)yi (18)

aeA se5; geQ;

subject to (11), (12), and

Sy avi->, > qyl=d, ieN.  (19)

acF; qeQ, a€B; ge,

This model, containing only the binary variables y,
is similar to the reformulations by discretization
described in the literature (Correia, Gouveia, and
Saldanha da Gama 2010; Gouveia 1995; Gouveia and
Moura 2012; Gouveia and Saldanha da Gama 2006).

2.2. Cut-Set Inequalities

We denote by % the collection of nonempty proper
subsets of N. For any cut U € %, we define its corre-
sponding cut sets F; = {a € A|t(a) € U, h(a) ¢ U} and
By ={a€A|t(a) ¢ U h(a) € U}. By summing the flow
conservation Equations (2) for all i € U and all k € K,
we obtain the following flow cut-set equations, after can-
celing equal terms:

D> %, -, x,=Dy, Uec, (20)

acFy; aeBy

where D, = 3, S df is the net supply across cut
U € U%. When U = {i}, i € N, we obtain a single-node cut
and we use the notation D; = D;,.

By combining the flow cut-set equations with con-
straints (3) and (4), we obtain the following segment-
based cut-set inequalities for model BS:

DI uiyi- >, D kyi=Dy, Uew, (1)

a€F; ses, aeB); ses,
DIDEy =D D viyi<Dy, Ueud. (22
aeF); ses, By seS,

These inequalities are redundant for the LP relaxation
BS, since they are obtained by linear combinations of
constraints of the original model. However, inequal-
ities derived from them by exploiting the integrality

RIGHTS <

of the y variables might be violated by LP optimal
solutions. In particular, every facet-defining inequality
for conv(CUT) can be used to strengthen BS, where
CUT; is the set of 0-1 solutions to the multiple choice
constraints (5) and the cut-set inequalities (21)-(22).
By adding all of the facet-defining inequalities for
conv(CUT5) to BS, we obtain a stronger LP relaxation,
which we denote BS+.

Note that the lower flow bounds I do not appear
in the LP relaxation BS defined by (15)-(17), but
they play an important role in the cut-set inequali-
ties (21)—(22). Indeed, if we use the weaker I =b:"
instead of I = b5™" + 1, the cut-setinequalities would still
be valid, but weaker. This observation further justifies
our use of [{ = b:! + 1 as lower flow bounds in con-
straints (4), in spite of the fact that these stronger lower
flow bounds do not improve the LP relaxation BS.

For model BP, a similar derivation yields the fol-
lowing point-based cut-set equations, which can also be
obtained directly from (21)—(22) for the case where [} =
bil+1=0b% =0

SIS ayi-> Sqyl=Dy, Ueu. (3

acky geQ; acBy qeQ;

Let us define CUT,, as the set of 0-1 solutions that sat-
isfy these cut-set equations, along with the multiple
choice constraints (11), and BP+ as the LP relaxation of
BP obtained by adding all of the facet-defining inequal-
ities for conv(CUT,) to formulation BP. We then have
the following result:

Proposition 2. v(BP+) > v(BS+).

Proof. Let y(i), i € I, be the extreme points of
conv(CUTp); any y(i), i € I, can be mapped to a solu-
tion of conv(CUT ) by the same construction used in the
proof of Proposition 1: for any 4 such that y (i) > 0 for
some g, we let y3(i) = (q/v%)y: (i) whenever g € Q3 for
some s. Consider an optimal solution to BP+; when pro-
jected over the space of y! variables, this solution can be
expressed as a convex combination of the extreme points
of conv(CUT5): ya = X A(i)ya (i), a € A, q € Q,, with
i AMi)=1and A(i) >0, i € I. Again, we construct a fea-
sible solution to BS+ as in the proof of Proposition 1: for
any a such that y; > 0 for some g in this optimal solution,
welet y5 =(g/v:)y: whenever g € Q¢ for somes (all other
variables remain at the same values). This solution satis-
fies all of the constraints of model BS; in addition, its pro-
jection over the space of y; variables can be expressed
as a convex combination of the solutions of conv(CUTs)
obtained by mapping the extreme points of conv(CUT; ):
v: = @/0)Y] = (@/05) T ADYE (D) = S A3, e,
this projected solution belongs to conv(CUT;), which
implies that v(BP+) > v(BS+). O

Note that the aggregation of two point-based cut-set
equations of the form (23) associated with U € U% and



Downloaded from informs.org by [132.204.243.250] on 11 September 2017, at 10:09 . For personal use only, all rights reserved.

Gendron and Gouveia: Reformulations by Discretization for PMFI
Transportation Science, 2017, vol. 51, no. 2, pp. 629-649, © 2016 INFORMS

633

W e U, UNW =@, is equivalent to the cut-set equation
associated with U U W. Indeed, using the notation
{UW}={acAlt(a)eU, h(a)e W}U{acAlt(a)eW,
h(a) € U}, we obtain after summing the cut-set Equa-
tions (23) for U and W

DL 2Ly >, 2.9y

aeFUJ‘r‘\" qus aeB.‘J,'«\' ‘\]&Qu
q
+ 25 2.(0-9)¥a=Duuw,
ac{lU,W}geQ;

which is the same as the cut-set equation associated
with UUW. This observation allows us to considerably
reduce the number of equations needed to character-
ize CUTp.

Proposition 3. CUT, is equal to the set of 0-1 solutions
that satisfy the multiple choice constraints (11) and the
point-based single-node cut-set equations

DN EDIPN

acF; geQ, aeB; geQ,

D, ieN. (24)

Proof. Using the same argument as above, all cut-set
equations of the form (23) canbe derived by aggregation
of single-node cut-set equations of the form (24). O

Proposition 3 illustrates another important differ-
ence between the segment-based cut-set inequalities
(21)~(22) and the point-based cut-set equations (23):
the single-node cut-set Equations (24) are enough to char-
acterize all point-based cut-set equations, whereas the
same is not true for the segment-based cut-set inequali-
ties, i.e., by restricting these inequalities to single-node
cuts, we only obtain a subset of CUT;. To see why,
observe that the aggregation of two cut-set inequal-
ities of the form (21) or (22) associated with U € U
and W € U, UNW =@, is not equivalent to the cut-set
inequality of the same form associated with U U W.
For example, by summing the cut-set inequalities (21)
for U and W, one obtains

PN A DI

aeF w sES, a€Byw €S,

+ Z Z(i’i-fi)yEZDuUw;

ae{l,W}ses,

which is dominated by the cut-set inequality of the
form (21) associated with U U W

Z Zviyj_ Z Zziy:ZDuUw-

a€F w s€S, aeByw €8,

Obviously, generating all facet-defining inequalities
for conv(CUT;) and conv(CUT,) is a hard task. In
particular, even for a set defined by a single cut-set
inequality associated with a given cut U, generat-
ing all facet-defining inequalities is not trivial. In the
context of reformulations by discretization, Chvétal-
Gomory rank 1 inequalities have been derived from a
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single inequality and proven to be rather exceptionally
effective (Correia, Gouveia, and Saldanha da Gama
2010; Gouveia and Moura 2012; Gouveia and Saldanha
da Gama 2006). The technique is simple: each possible
value in the discrete set is tried as a divisor of every
coefficient in the inequality; then, the resulting coeffi-
cients are rounded up or down to obtain inequalities
that are valid for the MIP model, but not necessarily
for its LP relaxation. The technique is easy to illustrate
on the point-based cut-set Equations (23), yielding the
following valid inequalities, where P = max,_,{u,}:

D

BIEES BT

acky Q“'-er acBy; geQ,
UeU,p=1,2,...,P, (25)

a9yl PSR

acBy 4eQ,| P
UeU,p=1,2,...,P. (26)

When p = 1, these inequalities reduce to the point-
based cut-set Equations (23). Note that a large num-
ber of these inequalities can be removed, since they
can be easily shown to be dominated by others. So,
even though there is a large number of valid inequal-
ities, P, for each cut U, only a small subset of them
will be generated. We also observe that, contrary to
the point-based cut-set Equations (23), (25)—(26) cannot
be reduced to inequalities associated only to single-
node cuts.

The technique can be generalized to the segment-
based cut-set inequalities (21)-(22), giving rise to the
following valid inequalities:

Duw
P

DI I
UeUp=1,2,...,P, (27)

a€F; ses, B ses
HP v;] . _|D
pIpNLAFED 3Py AR
a€F; ses, P aEBy; ses; P P

UeU,p=1,2,...,P. (28)

Let us define BS+ and BP+ the models obtained by
adding, respectively, inequalities (27)~(28) to BS and
inequalities (25)—(26) to BP. Since the Chvéatal-Gomory
rank 1 inequalities approximate the convex hull asso-
ciated with each single cut-set inequality, we have
the obvious bound relationships v(BS+) > U(BS+) and
v(BP+) > U(BP+) In addition, we have the following
result.

Proposition 4. U(B-f):-) > U(B-g:i-).

Proof. We apply the same construction as in part (1)
of the proof of Proposition 1. The result follows from
the inequalities b5 ' +1=1;<g<vi=bi,a€A,s€S,
geQ:. O
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2.3. Flow Disaggregation

Another approach to improve the basic segment-based
model is to define additional variables x** as the flow
of commodity k on arc a if the total flow x, on the arc
lies in segment s, and equal zero otherwise. These vari-
ables are related to the prevmus ones via the definitional
equations: x5 = 3, x&* and xf = 3,5 x¥. Using these
variables, we can define the fo]]owmg extended forcing
constraints (Croxton, Gendron, and Magnanti 2007):

x¥ <MFyi, aeAkekK,;seS,, (29)

where MF is an integer upper bound on the flow of
commodity k circulating through arc a; for instance,
one can simply use MY = min{u,, i3, d}[}. We
refer to the model obtained by adding the nonnega-
tive variables x*, the definitional equations, and the
valid inequalities (29) to BS as the extended segment-
based model, which we denote ES. Obviously, we have
v(ES) > v(BS).

We now define another reformulation of the PMFI by
applying a similar variable disaggregation technique
to the basic point-based model, BP. Additional vari-
ables x\7 are defined, representing the flow of com-
modity k on arc 4 if the total flow X, x¥ on the arc is
g,and equal zero otherwise. Using them, we can define
the following valid inequalities:

x' <Miyl, acAkeKqgeQ,. (30)

We refer to the mode] obtained by adding the non-
negative variables xi7, the deﬁnmonal equations gy, =
ke xt7 and xk=3 4€0, xi7, and the valid inequali-
ties (30) to BP as the extended point-based model, which
we denote EP.

We now show that, similar to what happens for the
basic models, the LP relaxations of the extended point-
based and segment-based models are equivalent. Note
that the proof of Proposition 1 does not apply to the
extended models, hence we have to use more elaborate
arguments. Our proof of the equivalence of these two
models makes use of the Lagrangian relaxation with
respect to the flow conservation Equations (2) for both
models, ES and EP. After projecting out all flow vari-
ables, except variables x*°, we obtain for model ES the
following Lagrangian subproblem, denoted by ES(m),

where 7t = (11})¥<X are the Lagrange multipliers:

v(ES(n)) = mm{ZZZ(cj i{m+ﬂm})x
agA se5; keK
D W WIANC

agA se5;
subject to (5), (7), and
Ly,< D xe <vjy;, acA,seS, (32)
keK

0<x*<Mlys, acA keK seS,. (33)

RIGHTS <

Note that we could remove the integrality constraint
on the variables x, = 3.« .5, Xi°, since it is implic-
itly satisfied in the Lagrangian subproblem. Indeed, for
any value of 5 € {0,1}, 2 € A,s € S, all x** variables
must assume integer values, because M¥, I$, and v¢ are
integers.

This Lagrangian subproblem has the integrality
property, i.e., we can solve it by relaxing the integral-
ity requirements (7). To see why, first note that we
can solve it independently for each arc a € A. Let us
denote LAG, and LAG, the sets of feasible solutions
to, respectively, the Lagrangian subproblem and its LP
relaxation associated with arc a € A, i.e., the constraints
defining LAG, have the following form:

Ey:< D xk<viys, ses, (34)
keK
0<xk <Mrys, keK,seSa, (35)
2 sl (36)
se5,
vy €{0,1}, se€Ss,. (37)

We then have the following polyhedral result, which
is extracted from the proof of Theorem 5 in Croxton,
Gendron, and Magnanti (2007).

Proposition 5. conv(LAG,) = LAG,.

Proof. The inclusion C is trivial. To show the inclu-
sion 2, it suffices to prove that every extreme point of
LAG, is integral. If not, then let (%, ) be an extreme
point of LAG, with at least one fractional component.
Assume that 0 < 7! <1, for r € R # @. Define the fol-
lowing [R| + 1 points in LAG,: (x(0), ¥(0)) = (0,0) and
(x(r),y(r)), for r € R, with x¥(r) = 25 /97, x**(r) =0,
s;&r, yi(r)=1and yi(r)=0,s #r. Then, (£,7)=(1 -

Zrer 9)(x(0), y(0)) + (Zyer 7;(x(r), y(r))) is a represen-
tation of (%, /) as a convex combination of [R| +1 > 2
distinct points in LAG,, contradicting the hypothesis
that it is an extreme point of LAG,. O

By Lagrangian duality theory (Geoffrion 1974), this
result implies that

v(ES) = max{z Z nidf + U(ES(H))}.

ieN keK

In the same way, we define for model EP the Lagran-
gian subproblem, EP(m), resulting from the Lagrangian
relaxation with respect to the flow conservation equa-
tions; EP(n) has the following form, where 7 = (7t})¥<k
are the Lagrange multipliers:

o(EP(n)) = {z S e -

a€A se5, geQf kekK

+ZZZf:y2], (38)

acA se5, geQs

ot nh{m)x
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subject to (11), (12), and

Dxii=qyl, acAqeQ,, (39)

kekK

0<x"<M'y!, acAkeKgeQ,  (40)

Similarly, as for ES(m), we can show that this La-
grangian subproblem has the integrality property. By
Lagrangian duality theory (Geoffrion 1974), it follows
that v(EP) = max, {2,y Siex mid¥ + v(EP(n))}.

Proposition 6. v(EP) = v(ES).

Proof. We have just seen that

v(ES) = max[z > mkdr+ v(ES(ﬂ))} and

ieN keK

v(EP) = max[z > mkdr+ U(EP(H))].

ieN keK

Therefore, the result follows if we can prove that the
two Lagrangian subproblems, ES(m) and EP(m), are
equivalent.

(1) We show that v(EP(n)) > v(ES(m)). Consider an
optimal solution to EP(mt); for any a such that y; =1

for some g in this optimal solution, we let y5 =1 and

k . )
x¥ = x," whenever g € Q: for some s. This defines a fea-

sible solution to ES(m) with objective value v(EP(m)).
(2) We show that v(EP(n)) < v(ES(m)). Consider an
optimal solution to ES(7); for any a such that y$ =1 for
some s in this optimal solution, the values of x* can
be obtained by solving a continuous knapsack prob-
lem, with both lower and upper integer capacities, I}
and v:, and integer bounds M} on each variable. We
conclude that there always exists an optimal solution
to ES(m) such that the total segment flow x3 (if it is
positive) is an integer g € Q2. As a consequence, we can
derive a feasible solution to EP(n) with value v(ES(m))
as follows: x,’ = x¥, k € K, and y! =1 whenever x: = q
(otherwise, all of the variables assume value 0). O

2.4. Combining Cut-Set Inequalities and Flow
Disaggregation

Our results from Sections 2.2 and 2.3 highlight that
the best LP relaxation bounds can be obtained by com-
bining cut-set inequalities with flow disaggregation.
To combine them into a single model, we have to
consider the following facts: (1) flow disaggregation
with point-based variables does not bring any bound
improvement on flow disaggregation with segment-
based variables; (2) cut-set inequalities that use either
segment-based or point-based variables can improve
the lower bound when added to the extended mod-
els (the results shown for the basic models easily
generalize to the extended models); (3) point-based
cut-set inequalities can improve on segment-based cut-
set inequalities.

RIGHTS <

These observations motivate the definition of new
models obtained from the extended-segment based
model by adding the point-based binary variables y;
through the linking equations

Dixke=>"qyl, acA,s€s, (41)
keK qed;

Vo= D Vi, a4€A,s€S, (42)
g0z

The two following relaxations are then obtained by
adding point-based cut-set inequalities:

o EP+, the model derived from ES by adding
the linking Equations (41)—(42), plus all of the facet-
defining inequalities for conv(CUT});

o EP+, the LP relaxation obtained from ES by add-
ing the point-based Chvéatal-Gomory rank 1 valid in-
equalities (25)—(26), plus thelinking Equations (41)-(42).

The next two relaxations are “pure” segment-based
models that are included to assess what can be gained
by adding the point-based cut-set inequalities:

e ES+, the formulation obtained by adding to ES all
of the facet-defining inequalities for conv(CUT);

o ES+, the LP relaxation obtained by adding the
segment-based Chvétal-Gomory rank 1 valid inequal-
ities (27)—(28) to ES.

The following proposition relates the optimal values
of these four relaxations of the PMFI.

Proposition 7. The following bound relationships hold:
(a) ©(EP=) > 0(ES*) > o(ESH).
(b) v(EP+) > v(EP+) > v(ES+).

These results, as well as all of the relationships
between the LP relaxation bounds presented in Sec-
tion 2, are summarized in Table 1. The symbol “<”
on an empty line relates the LP relaxation bounds of
the formulations above and below the line (the sym-
bol “<>" means that there is no dominance between
the bounds). Thus, from a theoretical perspective, the
strongest lower bound is obtained from model EP+,
and relaxation BS shows the worst lower bound.

We illustrate these different LP relaxation bounds
on an instance of the PMFI with a single segment on
each arc and three commodities. In spite of its appar-
ent simplicity, this small example is complex enough
to illustrate the impact of discretization, flow disaggre-
gation, and their combination on the improvement of
the LP relaxation bounds. Figure 1 shows the network
G = (N, A) for this instance, and Tables 2 and 3 specify
the data related to the arcs and to the commodities,
respectively. For each arc g, let x¥ denote the flow of
commodity k € {1,2,3} and y, the binary variable that
equals 1, if 37_, x¥ >0, and 0, otherwise.

An optimal solution consists in sending two units of
flow of commodity 1 on path (r, m, 1), two units of flow
of commodity 2 on path (r, m,2), and two units of flow
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Table 1. Summary of Formulations and Techniques Used to
Improve the Weaker Models, and the Relationships Between
the LP Relaxation Bounds

Segment Point

Technique based based
None v(BS) = v(BP)

= =
Chviétal-Gomory cut-set inequalities v(B5+) <  ou(BP+)

= =
Convex hull of cut-set inequalities v(B5+) <  ou(BP+)

== ==

Flow disaggregation v(ES) = v(EP)

= =
Flow disaggregation + v(ES+) <  ou(EP+)

Chvétal-Gomory cut-set inequalities

= =

Flow disaggregation + v(ES+) <  ou(EP+)

Convex hull of cut-set inequalities

of commodity 3 on path (r,n,3). This way, only two
arcs with a fixed cost of 10, (r,m) and (r, n), and only
one arc with a linear cost of 2, (m,2), are selected, for
an optimal value v(BS) = 24. The optimal values of the
y variables are therefore y,,, = y,, =1 and y,, =0.

By contrast, the LP relaxation of the basic segment-
based model utilizes the three arcs with positive fixed
costs, to save on the linear costs: in its optimal solu-
tion, two units of flow of commodity 1 are sent
on path (r,m, 1), two units of flow of commodity 2 on
path (r,n,3), and two units of flow of commodity 3 on
path (r,0,2). The optimal values of the y variables are
Y,m =1/3 and y,, = y,, = 2/5, with an optimal value
v(BS) =111

From the single-node cut {r}, we derive the follow-
ing segment-based cut-set inequality (which is the only
relevant one, since other cuts do not involve arcs with
positive fixed costs):

6yrm + Sym + Syro 2 6' (43)

Figure 1. PMFI Instance Used to Illustrate the Different LP
Relaxation Bounds

\(o

O
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Table 2. Data for Each Arc of the PMFI Instance of Figure 1

Arcs Capacity Fixed cost Linear cost
(r,m) 6 10 0
(r,n),(r,0) 5 10 0
(m,1),(n,3),(0,2) 2 0 0
(m,2),(n,1),(0,3) 2 0 2
(m,3),(n,2),(0,1) 2 0 10

Table 3. Data for Each Commodity of the PMFI Instance of
Figure 1

Commodity Demand Origin Destination
1 2 r 1
2 2 r 2
3 2 r 3

The only nonredundant Chvétal-Gomory inequality of
the form (27)—(28), derived from (43) for p =5, is

2yrm + y?‘l’i + y?‘ﬂ 2 2' (44)

By adding it to BS, we obtain BS+, whose optimal solu-
tion has the same flow values as that of BS, but the
optimal values of the y variables are y,,, = 3/5 and
Y, = Y,, = 2/5, with an optimal value v(BS+) = 14.
Compared to the optimal solution of BS, we note that
the value of y,,, is lifted by the cut, the other variables
remaining at the same values.

To compute v(BS+), we consider the convex hull of
0-1 solutions satisfying inequality (43), which is given
by the two following facet-defining inequalities, along
with the trivial facets y,,, <1,y,,<l,and y,, < 1:

Yom+ Y21, (45)
Yrm +Yro 2 1. (46)

We note that inequality (44) is obtained by aggregating
these two facet-defining inequalities. In spite of being
stronger, model BS+ provides the same optimal solu-
tion as that of BS+, thus we have v(BS+) = 14.
Considering now the point-based models, we have to
add 34 additional binary variables, which correspond
to the variables y; for each arc 2 € A and for each pos-
sible flow value g on arc 4, along with Equations (41)-
(42). The resulting point-based formulations not only
have a large number of variables, but the number of
point-based cut-set inequalities can also be significant.
For instance, CUT} is described by seven single-node
cut-set equations of the form (24) and 12 multiple choice
inequalities of the form (11). To identify all of the facet-
defining inequalities of conv(CUT;), we used PORTA
version 1.4.1 (Christof and Loebel 2015). Unfortunately,
after several days of computations, PORTA could not
provide the facets of conv(CUT,) and started experi-
encing numerical issues. For that reason, for all point-
based models, we use the relaxations defined by adding
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only the variables and the inequalities associated with
the single-node cut {r}; to simplify the notation, the
resulting relaxations will be identified with their corre-
sponding “complete” formulation, i.e., BP+,BP+,EP+,
and EP+. As we will see, considering these relaxations
will be sufficient to illustrate the bound improvements
obtained by moving from segment-based to point-based
models.

For the single-node cut {r}, we add 16 binary vari-
ables y; for a € {(r,m),(r,n),(r,0)} and for each flow
value g € {1,...,5}, with the additional value g =6
on arc (r,m). Using these variables to generate the
Chvétal-Gomory inequalities of the form (25)—(26),
we obtain five nonredundant inequalities, two of the
form (25) and three of the form (26). The optimal solu-
tion to BP+ has the same flow values as that of BS,
but the ophmal Values of the y Varlables are ym =
yrm 3’ Yoo = yru -5 a'nd You = 15’ ym 3’ yrn — 15 {au
other y variables are at value 0), with an optimal value
v(BP+) = 162. Compared to the optimal solution of BS,
we see that now, it is the value of y,, that is lifted.
There is only one Chvatal-Gomory inequality, of the
form (25) for p =5, that is responsible for this lifting

Z yrm + 2yrm + Z ym + Z yro £ (47)

We can easily see that this point-based inequality dom-
inates the segment-based Chvéatal-Gomory inequal-
ity (44) by writing down the latter inequality in the
space of point-based variables, using Equations (42)

6 5 5
D2yt + DY+ Dyl 22, (48)
q=1 g=1 g=1

The relaxation of BP+ restricted to the single-node
cut {r} can be obtained by finding the facet-defining
inequalities for the convex hull of 0-1 solutions to
the cut-set equation of the form (24) for i =r, along
with three multiple choice constraints of the form (11).
Again, PORTA was used for that purpose, result-
ing this time in the identification of all of the 149
facet-defining inequalities. It is noteworthy that, even
though the Chvatal-Gomory inequality (47) is not facet
defining (it is dominated by a facet found by PORTA),
adding it to BS provides the same LP relaxation bound
than adding all of the 149 facet-defining inequalities,
since we verified using CPLEX that v(BP+) = 162, the

same bound as v(gfﬂ-).

Now, turning our attention to flow disaggregation,
we can see that the LP relaxation of the extended for-
mulation, ES, splits the flow values to save on the
fixed costs, since its optimal solution sends one unit of
flow on the following paths: (r,m, 1), (r,n,1), (r,m,2),
(r,0,2),(r,n,3), and (r, 0,3). The optimal values of the

RIGHTS <

y variables are y,,, = ¥,, = ¥,, = 1/2, with an optimal
value v(ES) = 21. Note that the nontrivial facet-defining
inequalities (45) and (46) are satisfied by this optimal
solution, hence U(ES+) v(ES+) =21.

If we add the point-based binary variables to ES,
we note that the point-based Chvétal-Gomory cut-set
inequality (47) is violated by the optimal solution to ES.
The optimal solution to EP+ is obtained by rerouting
the flows as follows to satlsfy this cut-set mequahty in
the most economical way: x;,, =x%, =32, x], =32,x7 =2,

and xZ, =x}, =3 The op’nmal va]ues of the y variables
2 -1

are Y., = 83 yrm % yrm S’ Yin = l-‘if ym 32’ Yon = 32/

and y,, =3, ., = 5, Y3, = 5 (all other y variables are
equal to 0), with optimal value E?(EP+) 213,

After adding the point-based binary variables to ES,
along with the 149 facet-defining inequalities identi-
fied by PORTA, the same optimal solution as that of
EP+ is obtained, so we have v(EP+) = 213 Again, we
note that the single Chvatal-Gomory mequahty (47)
is responsible for the lower bound improvement from
segment-based to point-based models.

To summarize, we obtain for this instance the follow-
ing LP relaxation bounds:

0(BS) = 11} <14 = v(BS+) = v(BS+) < v(BP+)
= v(BP+) = 162 <21 = v(ES) = v(ES+)
= v(ES+) < v(EP+) = v(EP+) =213 <24
= v(BS).

In particular, this example shows the impact of
the point-based Chvétal-Gomory cut-set inequalities,
since we have 'U(BS+) < 'U(BP+) v(BP+) and 'U(ES+) <
U(EP+) = v(EP+).

3. Lagrangian Dual Optimization

In this section, we outline a Lagrangian relaxation
method that provides lower bounds on the opti-
mal value of the PMFL The algorithm computes a
tight approximation to v(EP+), the strongest lower
bound that we derived for the PMFI. This approximate
lower bound is obtained by computing in sequence
the weaker bounds v(BS), v(ES), v(ES+), v(ES+), and
v(EP+), using tight approximations to them. In Sec-
tion 3.1, we describe the Lagrangian subproblem for
computing the approximation to the lower bound
v(EP+); by slightly modifying this Lagrangian sub-
problem, we also show how to compute approxima-
tions to v(ES) and v(ES+). In Section 3.2, we outline
our algorithm to obtain approximate lower bounds. In
Section 3.3, we present the subgradient algorithm used
to find effective Lagrange multipliers.
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3.1. Lagrangian Subproblems

Based on our observations in Section 2.4, we exploit the
following reformulation of the PMFI, which uses the
segment-based and point-based variables in a single
model:

mm[ZZchx:’js +ZZf;y§], 49)

acA se5, kekK aEA SES,
DD =D D xk=df, ieN,keK,  (50)
acF; se5, aeB; se5,
By:< D> x°<vly;, acA,seS, (51)
keK
O<x*<M‘ys, aeA ,keK seS, (52)
>DIYi<1, a€A, (53)
s€S,
Dixke=>"qyl, acA,seS, (54)
keK ge0;
Yi=D.,Yi, ac€A,s€S, (55)
qeQ;
2.2.9¥i-2.,2,9y.=D;, ieN,  (56)
ack; ‘J‘:Q; acB; GEQ;
vi€{0,1}, acA,qeQ,, (57)
vy €{0,1}, a€A,s€S,. (58)

The objective (49), along with constraints (50)—(53)
and (58), correspond to the extended segment-based
model ES, where all flow variables, except the x’f vari-
ables, are projected out. Note that the integrality con-
straints on the total flow variables x, are not included in
the model, since they are implied by (54) and (57). Con-
straints (54)—(55) provide the link between the segment-
based variables and the point-based variables ;. The
point-based single-node cut-set Equations (56) com-
plete the formulation; these equations are redundant,
both in this model and in its LP relaxation, but they
will be used to improve the lower bound derived by
Lagrangian relaxation.

We now show how to compute v(EP+) using a
Lagrangian relaxation of the reformulation of the PMFI
defined by (49)—(58). We consider the Lagrangian relax-
ation of the flow conservation Equations (50) and of
the linking Equations (54), where 7t = (nf)¥<X and g =
()55 are the respective Lagrange multipliers. This
relaxation gives the following Lagrangian subproblem,
noted LAG,(m, B):

O(LAG () = min{ 3 3% 3(cif; =l ok

acA seS,; kekK

DS+ k) 69)
aeA se8; ge;
subject to constraints (51)-(53) and (55)-(58).

It is obvious that there exists an optimal solution to
the Lagrangian subproblem such that, for each arc a €
Aandsegments€S,, 3.« x* >0 only if y5 = 1. Hence,

RIGHTS LIN KO

we can solve the Lagrangian subproblem as follows:
for each arc a € A and segment s € S,, we first solve the
following continuous knapsack problem:

v(P;(m,B)) =min Z(cj -B; - ﬂ;:[a} + ni(ﬂ))xf, (60)

keK
<> e <o, (61)
keK
0<xf <M kek (62)

Then, we reformulate the Lagrangian subproblem as
follows:

v(LAGp(m, B))
mez,} Zs P (m, B) + £)ys + D 4Biva |, (63)
acA se5; qeQs

subject to constraints (53) and (55)—(58). The result-
ing Lagrangian subproblem is a pure integer pro-
gramming (IP) model expressed only in terms of
the segment-based and the point-based variables y
and ;.

Solving the corresponding Lagrangian dual allows
us to compute v(EP+), as stated next.

Proposition 8. v(EP+)=max, s{Zcn Zex T d}+
v(LAG(m, B))}.

Proof. By Lagrangian duality theory (Geoffrion 1974),
the Lagrangian dual is equivalent to optimizing
the objective function (49) over the feasible domain
described by the intersection of the set defined by (50)
and (54) with the convex hull of the set defined by
(51)—(53) and (55)—(58), which we denote by {(50),
(54)} N conv({(51)-(53), (55)—(58)}). If we can show
that this feasible domain is equal to {(50)—(55)} N
conv(CUTp), ie. the set defined by (50)-(55) to
which we add all of the facet-defining inequalities for
conv(CUT,), the result would immediately follow by
definition of EP+. To show that {(50), (54)} N conv({(51)-
(53), (55)-(58)}) = {(50)=(55)} N conv(CUTp), we first
remark that the inclusion C follows by Proposition 3.
To show the inclusion 2, it suffices to show that every
extreme point of {(51)—(53), (55)} Nconv(CUT)}) is inte-
gral. Yet, this is immediate, since every extreme point
of conv(CUT;) satisfies the integrality constraints on
the point-based variables, (57), along with ¥ .. yi <
S0, ¥a<1,a€A, s €8S,. Hence, by (55), the integral-
ity constraints on the segment-based variables, (58), are
satisfied. O

Slight variations of this Lagrangian relaxation ap-
proach yield the following lower bounds, provided the
optimal Lagrange multipliers are computed:

e u(ES). It suffices to drop constraints (54) to (57)
and to apply the same Lagrangian relaxation. In a simi-
lar way as above, there exists an optimal solution to the
resulting Lagrangian subproblem such that, for each
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arca € A and segments €S, X, x* >0 only if 5 = 1.
As a result, we can reformulate the Lagrangian sub-
problem as follows:

min > > (0(Pi () + £7)v:, (64)

acA ses,

subject to (53) and (58), where v(P:(m)) is the optimal
value of the following continuous knapsack problem:

v(P;(m)) = mmZ(cj - ﬂ;:[a} + ni{ﬂ))x;‘s, (65)

keK

subject to (61) and (62). The Lagrangian subproblem is
thus solvable by finding the smallest Lagrangian cost
v(P;(n))+ f; foreacharca, i.e., if min, s {v(P;(n))+f;}
<0 then for one s € S, that achieves this minimum,
we set y; =1; otherwise, we set y; =0, s € 5,. A sim-
ilar approach has been used to solve other problems
related to the PMFI (Balakrishnan and Graves 1989;
Crainic, Frangioni, and Gendron 2001; Holmberg and
Yuan 2000).

* p(ES+). We simply replace constraints (54)-(57)
by the segment-based cut-set inequalities (21)-(22) and
apply the same approach as for v(ES) when evaluating
the Lagrangian subproblem. Here, however, we obtain
a pure IP model, in a similar way as when computing
v(EP+), but expressed only in terms of the y variables.
Note that this IP model contains an exponential num-
ber of cut-set inequalities, in contrast to the IP model
used when computing v(EP+), which has a polynomial
number of point-based single-node cut-set equations.

3.2. Computing Approximate Lower Bounds
As we have just seen, each of the Lagrangian sub-
problems solved when computing v(ES+) contains an
exponential number of cut-set inequalities. Although
we could add them iteratively using a cutting-plane
approach, these inequalities are difficult to separate
for general multicommodity network flow problems.
An alternative to a cutting-plane approach is to gener-
ate a priori a small subset of these inequalities. In our
implementation, we adopted this approach, since our
objective is not to obtain the exact lower bounds, but
rather to compute efficiently tight approximations of
them. Hence, we generate only the inequalities based on
single-node cuts, a choice that is justified by computa-
tional experiments on similar problems (Atamtiirk 2002;
Chouman, Crainic, and Gendron 2017), which show that
single-node cut-set inequalities are responsible for most
of the lower bound improvement obtained by adding
cut-set inequalities in the context of multicommodity
network flow problems.

The reformulation of the Lagrangian subproblem as
a pure IP model, i.e., (63) subject to constraints (53) and
(55)—(58), is difficult to solve because of the large num-
ber of binary variables involved and also because the
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model exhibits a lot of symmetry, i.e., many solutions
have very close objective values. To circumvent these
issues, we solve instead an MIP relaxation of this refor-
mulation obtained by dropping the integrality of the y;
variables and by adding the segment-based and the
point-based Chvatal-Gomory rank 1 valid inequalities,
ie., (27)-(28) and (25)—(26), respectively, restricted to
single-node cuts. The segment-based Chvétal-Gomory
rank 1 valid inequalities are then redundant, but we
have observed that their addition helps in solving the
model more efficiently. By contrast, the point-based
Chvétal-Gomory rank 1 valid inequalities are no more
redundant, since the yg variables are now continuous;
in particular, their addition allows us to derive a tighter
LP relaxation.

To compute tight approximations to v(EP+), we pro-
pose two incremental strategies that are called one
after the other and combined to produce the best
approximate lower bound. The first strategy, called the
Lagrangian strategy (or LAG), initializes the Lagrange
multipliers 7 to the values obtained when solving BS,
the model defined by (15)~(17), with a state-of-the-art
LP solver. The strategy then updates the Lagrange mul-
tipliers by a subgradient method (to be detailed in
Section 3.3) that derives tight approximations to v(ES)
and v(ES+). As a final step, strategy LAG solves the
Lagrangian subproblem defined in Section 3.1 by using
the best values for the Lagrange multipliers 7 found so
far and by setting to zero the Lagrange multipliers
associated with the linking Equations (54). The second
strategy, called the LP-based strategy (or LPS), initializes
the Lagrange multipliers 7 to the values obtained when
solving an LP-based approximation to v(ES+) restricted
to single-node cuts. The strategy then computes val-
ues for the Lagrange multipliers f by solving an LP-
based approximation to v(EP+). The final step of strat-
egy LPSsolves the Lagrangian subproblem of Section 3.1
by using the best Lagrange multipliers m and g found
so far. By combining these two incremental strategies,
we obtain a unified procedure that makes use of tight
approximationstotheboundsdefined inSection2.4,i.e.,
v(ES+), v(ES+), v(EP+), and v(EP+).

The Lagrangian dual optimization procedure is out-
lined as follows:

1. Lagrangian strategy (LAG).

(a) Compute v(BS); let n° be the optimal La-
grange multipliers obtained from the optimal LP dual
solution.

(b) Given initial Lagrange multipliers 7, apply a
subgradient method to find an approximation to v(ES);
let ' be the best Lagrange multipliers found by the
subgradient method.

(c) Given initial Lagrange multipliers ©', apply
a subgradient method to find an approximation to
v(ES+); let 11 be the best Lagrange multipliers found
by the subgradient method.
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(d) Given Lagrange multipliers n?, find an
approximation to v(EP+) by solving the MIP relaxation
of the Lagrangian subproblem LAG,(7?,0), as outlined
above.

2. LP-based strategy (LPS).

(a) Compute an approximation to v(ES+) by solv-
ing the LP relaxation obtained by restricting the
segment-based Chvatal-Gomory rank 1 valid inequal-
ities (27)—(28) to single-node cuts; let 7° be the optimal
Lagrange multipliers obtained from the optimal LP
dual solution.

(b) Given Lagrange multipliers n°, find an ap-
proximation to v(EP+) by solving the LP relaxation of the
Lagrangian subproblem obtained from model (49)—(58)
by relaxing the flow conservation Equations (50) (with
Lagrange multipliers = = 7°) and by replacing the
point-based single-node cut-set Equations (56) with
the point-based Chvatal-Gomory rank 1 valid inequal-
ities (25)—(26) restricted to single-node cuts; let n* and g*
be the optimal Lagrange multipliers obtained from the
optimal LP dual solution.

(c) Given Lagrange multipliers 7t* and %, find an
approximation to v(EP+) by solving the MIP relaxation
of the Lagrangian subproblem LAG,(n*, %), as out-
lined above. o

3. Return as the approximation to v(EP+) the best of
the two approximations found in steps 1(d) and 2(c).

A few remarks are in order to fully understand the
procedure:

* As shown in our computational experiments re-
ported in Section 5, the computations of v (BS) (step1(a))
and v(ES) (step 1(b)) are extremely fast. Our experi-
ments also confirm that the subgradient method used
in steps 1(b) and 1(c) generally performs better when
itis provided with “good” initial Lagrange multipliers.
These observations explain the incremental approach
used in the Lagrangian strategy.

* QOur experiments, reported in Section 5, show that
the MIP relaxation used in steps 1(d) and 2(c) is solved
efficiently, but requires a much more significant time
than the Lagrangian subproblem used to compute the
approximation to v(ES+). In particular, although the
subgradient optimization algorithm is both efficient
and effective for computing this lower bound, it is not
practical for computing an approximation to v(EP+).
On one hand, the computing times become prohibitive,
because of the increased number of Lagrange mul-
tipliers and because of the difficulty in solving the
Lagrangian subproblems. On the other hand, the lower
bound obtained by the combination of the two incre-
mental strategies is already very effective, to the point
that the subgradient optimization algorithm provides
only minor bound improvement, as shown in Section 5.
These observations explain why we solve only one
Lagrangian subproblem in steps 1(d) and 2(c), instead
of using the subgradient method.
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¢ In step 2(a), we solve the corresponding LP relax-
ation by using a state-of-the-art LP solver. Another
approach would be to solve the same LP relaxation by
using the subgradient optimization algorithm in con-
junction with the Lagrangian relaxation of the flow
conservation equations. At first, this approach appears
very similar to the one used to compute the approx-
imation to v(ES+). There is a major difference, how-
ever: the resulting Lagrangian subproblem is defined
in terms of continuous variables only. As a conse-
quence, the property that, for each arc 2 € A and seg-
ment S€S,, Yk x >0 only if y5 =1 is not true
anymore; instead, we have that, for each arc 2 € A
and segment s €S5,, ¥« x* > 0 only if y > 0. This
apparently minor modification makes a huge differ-
ence when solving the Lagrangian subproblem, since
it is not possible to solve it through decomposition into
a collection of continuous knapsack problems followed
by the solution of a model expressed only in terms
of the y¢ variables. Instead, the Lagrangian subprob-
lem would be solved as a nondecomposable LP model
involving both the flow variables x** and the segment-
based variables y;. As a result, the direct solution of the
LP relaxation in step 2(a) is computationally preferable
to the Lagrangian relaxation approach for approximat-
ing the same bound.

* Instead of performing steps 2(a) and 2(b), we
could have solved the approximation to v(EP+) defined
by model EP+ restricted to single-node point-based
Chvétal-Gomory rank 1 valid inequalities (25)—(26). As
shown in our computational experiments reported
in Section 5, the computing times for solving this
LP relaxation are prohibitive. By contrast, the LP-
based incremental strategy computes effective lower
bounds, while ensuring low computational require-
ments. These observations explain the incremental
approach used in the LP-based strategy.

¢ When solving the LP relaxation of the Lagrangian
relaxation in step 2(b), we also add the segment-based
Chvétal-Gomory rank 1 valid inequalities (27)—(28)
restricted to single-node cuts. Although these inequal-
ities are redundant, we observed that their addition
generally improves the computing times.

¢ The combination of the two incremental strategies
has the nice characteristic that it preserves most of the
bound relationships of Proposition 7, where each theo-
retical bound is replaced by its approximation given by
the procedure. Indeed, the inequalities v(EP+) > v(ES+)
and v(EP+) > U(EP+) are guaranteed by steps 1(d) and
2(c), respectively. The inequality v(EP+) > U(ES+) fol-
lows from step 2(b). Because approximations of the
two bounds v(ES+) and v(ES +) are computed indepen-
dently, only the inequality v(ES+) > v(ES+) might be
violated, although, in practice, it is generally satisfied.
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3.3. Subgradient Method

The subgradient method is a simple implementation
of the classical Held-Wolfe-Crowder approach (Held,
Wolfe, and Crowder 1974). At every iteration £ >0, the
new Lagrange multipliers n(t) are computed by tak-
ing a step a(t) in the direction of a subgradient y(t):
n(t) =n(t —1) + a(t)y(t). The subgradient y(t) is equal
to the difference between the right- and left-hand
sides of the flow conservation equations evaluated at
the optimal solution of the current Lagrangian sub-
problem. The step is computed as a(t) = A(t)(v" — v -
(n(t=1)))/|ly(#)||°, where v(n(t — 1)) is the Lagrangian
lower bound associated with Lagrange multipliers
n(t — 1), v* is an upper bound on the optimal value
of the Lagrangian dual (we use the best upper
bound obtained by the Lagrangian heuristic method
described in Section 4), A(t) is a parameter that takes
its initial value A(0) in the interval (0,2] and is typi-
cally decreased (divided by w, > 1) every time v(7(t))
has not improved for some number w, of consecutive
iterations. The algorithm stops when the lower bound
has not improved for some number w, of consecutive
iterations or when a maximum number w, of iterations
has been attained. In our experiments, we use the fol-
lowing values for these parameters: A(0) =1, w; =2,
w, =15, w; =30, and w, =400.

4. Lagrangian Heuristic

In this section, we present the Lagrangian heuristic
method used to compute feasible solutions to the PMFI,
yielding upper bounds on the optimal value of the
problem. As in any Lagrangian heuristic method, we
make use of the values 7 obtained from solving any
Lagrangian subproblem to derive feasible solutions to
the PMFI. To derive effective feasible solutions from
the Lagrangian subproblem solutions, we use a slope
scaling procedure, which has been used successfully
in the context of single-commodity (Kim and Parda-
los 1999; Kim and Pardalos 2000) and multicommodity
(Crainic, Gendron, and Hernu 2004) network flow prob-
lems. The novelty here is to embed it within a traditional
Lagrangian heuristic method that uses the Lagrangian
subproblem primal solutions to guide the search for
feasible solutions. Section 4.1 gives the details of the
slope scaling procedure, which solves a sequence of
linear continuous multicommodity network flow prob-
lems. In Section 4.2, we explain how to use the solu-
tions obtained by the slope scaling procedure to drive
the search for effective integer multicommodity flow
solutions. Section 4.3 presents how the slope scaling
procedure is combined with the Lagrangian dual opti-
mization approach described in Section 3.2 to produce
a complete Lagrangian relaxation method that gener-
ates lower and upper bounds on the optimal value of
the PMFIL.
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4.1. Slope Scaling Procedure

The guiding principle of a slope scaling approach is
extremely simple: given a feasible solution to a non-
linear network flow problem, the objective function is
linearized in such a way that, if the resulting linear net-
work flow problem provides as optimal solution the
same feasible solution, the optimal value of the linear
problem corresponds to the nonlinear objective func-
tion value.

At every step of the slope scaling approach, we
consider the following linear multicommodity net-
work flow problem, denoted MF, where the linear arc
costs ¢, are to be adjusted using the slope scaling guid-
ing principle:

o(MF)=min >, >} ¢,x;, (66)
aeA kekK
subject to (2), (6), and
Dixk<u,, acA. (67)
keK

This problem can be solved with any existing efficient
method for linear multicommodity network flow prob-
lems; in our implementation, we use a state-of-the-art
LP solver. Note that the costs and the capacities do not
depend on the commodities. As a consequence, when
some commodities share the same origin (or the same
destination), they can be aggregated into a single com-
modity, thus reducing the size of the problem.

Suppose we solve MF and obtain a feasible solution
with flows x¥; for each arc a, we then let ¥, = 3, 4 %
and 5, the segment of the piecewise linear objective
function of PMFI such that x,* = %,. The linear cost ¢, at
the next slope scaling iteration is then adjusted using
the formula

. {ci“ +(f%,), if%, >0,

“ e, if ¥, =0.

Thus, when there is flow on arc a and the same flow
appears again in the solution obtained after comput-
ing MF, the associated linear cost reflects the piecewise
linear cost: (c;" + (f2" /%,))%, = ca*x3" + f2*. When there
is no flow on arc g, the slope scaling update must intu-
itively assign a sufficiently large linear cost to arc 4, but
not too large to avoid “freezing” the solution too early.
The cost used at the previous iteration was precisely
large enough for the flow not to transit through arc a
and is thus used for that purpose.

The slope scaling approach iterates between the solu-
tion of MF and thelinear cost update until the same solu-
tion is repeated or a maximum number of iterations is
achieved (we use 50 in our implementation). To start
this iterative process, we need initial linear costs; this
is where we use the Lagrangian optimal solutions i,
in the spirit of a classical Lagrangian heuristic method.



Downloaded from informs.org by [132.204.243.250] on 11 September 2017, at 10:09 . For personal use only, all rights reserved.

642

Gendron and Gouveia: Reformulations by Discretization for PMFI
Transportation Science, 2017, vol. 51, no. 2, pp. 629-649, © 2016 INFORMS

More precisely, we initialize the linear cost ¢, on each
arc with the formula

Ea =(Ca +fa/ua)(1+M(l —Zﬂj))r

se5,

S s . -
where ¢, =c}*/, f, = £/, and M is a sufficiently large

number (we use 10 in our implementation). When arca
is used in the Lagrangian solution, i.e., 25, ¥; =1, the
rationale behind this formula is then to use the lin-
ear lower approximation c, + f,/u, that corresponds to
the line connecting the origin to the objective function
value at full usage of the arc, i.e., its capacity u, = b/,
When arc a is not used in the Lagrangian solution, i.e.,
Zses, ¥z =0, the linear cost should be sufficiently large
to reflect the fact that arc a is not “interesting” accord-
ing to the Lagrangian solution.

4.2. Deriving Integer Solutions
Any solution % derived from solving MF is feasible for
the PMFI if x is integer. The upper bound correspond-
ing to this feasible solution is v(%) = X, 4(c,* %, + f,*)-
During any call to the slope scaling procedure, we
thus keep track of the best integer solution ¥ with
its corresponding value v(%). To prevent against the
possibility that no integer solution x is found during
an entire call to the slope scaling procedure, we also
keep track of the best noninteger solution, the one
with the best piecewise linear objective function value
0(%) = Z,enlc’ %, + f,°). If the best integer and nonin-
teger solutions are “close” enough (in our implemen-
tation, if they differ by less than 1%), the slope scaling
procedure is stopped; otherwise (if no integer solution
is found or only a “poor” integer solution is found),
we then solve again the MF that gave the best nonin-
teger solution, but this time with the addition of the
integrality constraint on the total flows. If the resulting
integer solution is better than the currently best inte-
ger solution, it replaces it. By proceeding in this way,
we also ensure that we obtain an integer solution x of
value v(%) at the end of the slope scaling procedure.
Note that v(x) is the piecewise linear objective func-
tion value of the integer solution x derived from solv-
ing MF. Thus, ¥ is optimal when using the linear costs
adjusted with the slope scaling formula, but it is not
necessarily the best solution for the restriction of the
PMFI that uses the same arcs as X at the same lower
and upper limits. To determine this solution, we solve
the following integer multicommodity flow problem,
IMF(x), using the best integer solution x found by the
slope scaling procedure

o(IMF(%)) = > f* +min > | ci'x,, (68)

acA aeA
subject to (2), (6), and
Z x:’j =x, integer, a€A, (69)
keK
[ <x,<vy, acA. (70)
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Note that this problem always has a feasible solution,
namely, ¥. By optimizing over the “true” piecewise lin-
ear objective function, we can thus only improve on the
value v(%). Thus, as an intensification step after every
call to the slope scaling procedure, we solve IMF(x)
and use its optimal value v(IMF(x)) to possibly update
the best upper bound v".

4.3. Combining Slope Scaling and Lagrangian
Dual Optimization

The slope scaling procedure is called just after comput-
ing v(BS) in the Lagrangian strategy (i.e., step 1(a) of
the Lagrangian dual optimization procedure presented
in Section 3.2), this time using the optimal solution ¥
to BS; this provides an initial upper bound v* given to
the subgradient method used in step 1(b) of the proce-
dure. Subsequently, we call the slope scaling procedure
in two modes: (1) in conjunction with the subgradi-
ent method used in steps 1(b) and 1(c); (2) as part of
solving the MIP Lagrangian subproblem in steps 1(d)
and 2(c). Within each of these two modes, the slope
scaling procedure is called several times, thus produc-
ing a pool of “good” feasible solutions, out of which
we apply a postoptimization procedure that produces an
improved feasible solution.

We use the following rules to decide when to call
the slope scaling procedure in conjunction with the
subgradient method in steps 1(b) and 1(c):

e (Call the slope scaling procedure using the solu-
tion 7; that corresponds to the best Lagrangian sub-
problem obtained at the end of the step.

¢ (Call the slope scaling procedure using solution i
if the lower bound has improved “significantly” since
the last time the upper bound was computed; the “sig-
nificant” improvement is measured by the test (v(last) -
v(current))/v(last) > 6, where 6 is a parameter (set to
1%) and v(last) and v(current) are, respectively, the
lower bound computed at the current iteration and the
lower bound obtained the last time the slope scaling
procedure was called.

¢ Call the slope scaling procedure every nth (n = 10)
iteration of the subgradient method (to avoid too early
“freezing” of upper bound computations in case 6 is
too large).

The slope scaling procedure is thus called several
times in conjunction with the subgradient method,
both in steps 1(b) and 1(c). The pool of feasible solu-
tions thus obtained is used in the postoptimization
procedure outlined below.

When solving the MIP Lagrangian subproblem in
steps 1(d) and 2(c), we use a state-of-the-art MIP solver
that implements a branch-and-bound (Bé&B) algorithm.
For each integer solution found during the exploration
of the B&B tree, which provides binary values y; for
the segment-based variables, we invoke the slope scal-
ing procedure. Thus, at the end of each of steps 1(d)
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and 2(c), we give as input to the postoptimization pro-
cedure the pool of feasible solutions obtained from
calling the slope scaling procedure heuristic multiple
times, one for each integer solution.

At the end of steps 1(b), 1(c), 1(d), and 2(c) of the
Lagrangian dual optimization procedure, the follow-
ing postoptimization procedure is applied. We assume
we have kept in memory a pool of the feasible solu-
tions found during the corresponding step by the slope
scaling procedure. Out of the solutions in this pool, we
extract only the best solutions %, i.e., those with a value
v(IMF(x)) sufficiently close to the best upper bound v*
(in our tests, we consider ¥ if the relative gap between
v(IMF(x)) and v" is less than 1%). We denote by & the
pool consisting of these best solutions. We then define
A={aecAlx,=0,Vx € P}, the subset of the arcs for
which every solution in & displays no flow circulat-
ing on these arcs. We solve the MIP formulation BS(A),
which is the basic segment-based model of the PMFI
restricted to the arcs in A \ A. This model is defined by
(1)-(7) with the addition of the constraints

Dy:i=0, acA. (71)

sES,

It is obvious that each solution X € P defines a fea-
sible solution to BS(A). As mentioned above, IMF(%)
is optimizing over the true piecewise linear objective
function, but it does so by fixing the segment of the
cost function for each arc. By contrast, BS(A) fixes only
the arcs that are not used in every solution x € &, while
optimizing over all segments of the cost function for
the other arcs. Hence, the best value v(IMF(x)) for any
X € ?, which is given as the best incumbent value when
starting to solve BS(A), can only be improved as a result
of solving BS(A). The output of this postoptimization
procedure is the best feasible solution found this way,
which is used to improve on the value v obtained at
the end of the Lagrangian heuristic method.

5. Computational Experiments

We present computational results on a large set of ran-
domly generated instances with different cost struc-
tures. Our objective is twofold:

* To assess the performance of the Lagrangian re-
laxation method. To this purpose, we compareits results
to those obtained by a state-of-the-art LP/MIP solver.
This way, we are able to compare the Lagrangian-
based lower bounds with their corresponding equiv-
alent LP relaxation bounds for these models. We also
compare the upper bounds from the Lagrangian heuris-
ticmethod with those from the MIP solver with alimited
CPU (central processing unit) time.

* To assess the quality of the different formulations
with respect to various network configurations and cost
structures. In particular, we are interested in evaluating
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the improvements in the bounds obtained by discretiza-
tion combined with the addition of cut-set inequalities
and flow disaggregation.

The Lagrangian relaxation method was imple-
mented in C++, using CPLEX version 12.5.1.0 as the
MIP/LP solver. The code was compiled with g++ 4.4.7
and run on an Intel Xeon X5675, operating at 3.07 GHz,
in single-threaded mode. Before analyzing the results
in Section 5.3, we first describe the set of instances used
in our experiments in Section 5.1 and then present the
design of the experiments in Section 5.2.

5.1. Set of Instances

We obtained the problem instances from a network
generator similar to the one described in Crainic,
Frangioni, and Gendron (2001) for multicommodity
capacitated fixed-charge problems. When provided
with target values for |[N| and |A|, this generator cre-
ates arcs by connecting two randomly selected nodes
(no parallel arcs are allowed). The commodities are
generated as follows: given target values |O| < |N| and
|[D| < |[N[-|0O]|, the number of origins and destinations,
respectively, it selects the origins at random. Then,
for each origin, it selects |D| destinations at random
among the nodes in N \ O, where O is the set of ori-
gins. The number of commodities is therefore equal
to |K| = |O| X |D|. The generator also creates the vari-
able costs, capacities, and demands as uniformly dis-
tributed over user-provided intervals. The capacities
can then be scaled by adjusting the capacity ratio, C =
|A|T /X ,ca t,, to user-provided values (in this formula,
T =3 Sek Zie |dF], the total demand flowing through
the network). When C equals 1, the average arc capacity
Ysea U,/|A] equals the total demand, and the network
is lightly capacitated. It becomes more tightly capaci-
tated as C increases.

For each network, we generated two cost structures, as
in Croxton, Gendron, and Magnanti (2007): concave and
nonconcave. For both types of instances, we provided
the maximum number of segments, S, of the cost func-
tion as a parameter. For concave instances, we randomly
generated a set of decreasing variable costs within the
specified interval for each arc. We also set b% = s2D/S?,
for each arc g, so that the segment length increases as s
increases, asis typical of transportation costs (Balakrish-
nan and Graves 1989). We then adjusted the number of
segments on each arc a so that b%' = min{T, u,}. Given
variable costs, break points, and f,, the initial fixed cost,
we can then compute the appropriate fixed costs for
the remaining segments so that the resulting function is
concave. We obtained nonconcave instances by impos-
ing b; = [T/S], for each arc a, so that each segment is
of equal size, except the last one. We then adjusted the
number of segments to account for the capacities on the
arcs by eliminating segments beyond any arc’s capac-
ity. The network generator provided the variable costs,
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which are not necessarily decreasing, as in the concave
case. Given an initial fixed cost f] for each arc, we com-
pute the remaining fixed costs as f = s f;. Thus, when
fl >0, we obtain a staircase cost function (with variable
costs). In our experiments, we consider four different
cost structures: concave and nonconcave, with £} =100
and 1,000.

We classify the instances according to the number of
commodities, which is one of the main characteristics
in assessing the difficulty of solving the models. We
consider three classes of instances:

e Small instances (|K| = 25). The following net-
work dimensions are used for instances in this class:
(IN1, |A]) = (20,75), (20,100), (25,100), (25,150). For
each of these four combinations, we select five origins
and, for each of them, five destinations, i.e., |O|=5and
|D| =5, so the number of commodities is |K| = 25.

o Medium instances (|K| = 50). We use the same four
network dimensions as for Small instances. We then
select |O| =5 origins at random and, for each of them,
we select |[D| = 10 destinations at random among the
IN| - |O| remaining nodes. The number of commodi-
ties is therefore |K| = 50.

e Large instances (|K| = 100). We use the same four
network dimensions as for Small and Medium in-
stances. These instances have |K| = 100 commodities
obtained by selecting |O| = 10 origins and, for each
of them, |D| = 10 destinations among the [N| - |O|
remaining nodes.

Thus, in each category of instances, there are four
combinations of network dimensions (|N|,|A|). For
each of these combinations, we generate 24 instances
by varying the different parameters in a similar way as
in Croxton, Gendron, and Magnanti (2007): in addition
to the four different cost structures, we vary the num-
ber of segments (4, 6,8) and the capacity ratio C (2,4).
Our generation procedure thus results into 96 instances
in each category, for a total of 288 instances.

5.2. Design of the Experiments
Our experiments consider four MIP formulations of
the PMFL:

e BS: The basic segment-based model defined by
(M=),

e ES: The extended segment-based model defined
by (49)~(53) and (58).

e ES+: This is model ES with the addition of the
segment-based Chvatal-Gomory rank 1 valid inequal-
ities (27)—(28) restricted to single-node cuts.

e EP+: This is model ES with the addition of the
constraints defining the point-based variables, (54),
(55), and (57), along with the point-based Chvétal-
Gomory rank 1 valid inequalities (25)—(26) restricted to
single-node cuts.

The following methods are used to compute lower
and upper bounds based on these four formulations:
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* LD, the Lagrangian dual optimization proce-
dure presented in Section 3.2. The following bounds,
approximated by this method, are reported: v(ES)
(step 1(b)), v(ES+) (step 1(c)), v(EP+) (steps 1(d), 2(c),
and 3). When solving the Lagrangian subproblems
used to compute v(ES+) and v(EP+), the B&B method
of CPLEX (with default options) is used. In addition,
the Chvatal-Gomory rank 1 valid inequalities (25)—(28)
for p > 1 are declared as lazy constraints, which ensures
that CPLEX is adding only a small number of them, in
a cutting-plane fashion.

¢ LP, the LP solver of CPLEX (with default options).
The following bounds are computed by this method:
v(BS), using the model defined by (15)-(17); v(ES),
using the LP relaxation of MIP model ES; v (E.Ei-), using
the LP relaxation of MIP model ES+; and v(EP+), using
the LP relaxation of MIP model EP+.

* BB, the root node computations of the Bé&B
method of CPLEX (with default options). Lower
bounds for the four MIP formulations are computed
with this method. Because of CPLEX preprocessing
and cutting-plane procedures, these lower bounds
dominate those computed by method LP. Again, the
Chvétal-Gomory rank 1 valid inequalities (25)—(28) for
p > 1 are declared as lazy constraints.

¢ BB, the B&B method of CPLEX (with default
options) performed for a limit of one hour. This method
generates both lower and upper bounds based on the
four MIP formulations, except for the instances for
which CPLEX cannot find any feasible solution within
the limit of one hour, in which case only a lower bound
is obtained.

* LH, the Lagrangian heuristic method described
in Section 4. Upper bounds are computed based on
formulations ES (in step 1(c) of method LD), ES+ (in
step 1(c) of method LD), and EP+ (in steps 1(d), 2(c),
and 3 of method LD).

For each instance I, these five methods are per-
formed for the four models, producing several lower
and upper bounds on the optimal value of the PMFI
for instance I. The best of these upper bounds, de-
noted v*(I), is used as a reference for computing lower
and upper bound gaps. More precisely, for any bound
(lower or upper) v(I), we compute the ratio with
respect to the best-known upper bound v*(I) for each
instance, i.e.,, GAP(I) = v(I)/v*(I), which implies that
values closer to 1 are better.

5.3. Analysis of the Computational Results
We first analyze the results obtained with different
strategies to approximate v(EP+). We compare the fol-
lowing approaches:

e LAG, the Lagrangian strategy performed in
steps 1(a) to 1(d) of the Lagrangian dual optimization
procedure presented in Section 3.2.
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Table 4. Strategies to Approximate v(EP+): Lower Bound GAP, Upper Bound GAP, CPU

(N1, |A]) LAG LPS LAG +LPS LAG + SUB

(20,75) 0.93, 1.03, 16 0.93,1.03, 14 0.94, 1.02, 30 093, 1.03, 13,829
(20,100) 0.94, 1.02, 22 0.93, 1.04, 40 094, 1.02, 62 094, 1.02, 24,391
(25,100) 0.92,1.01,17 0.93,1.04, 26 093, 1.01, 44 092, 1.01, 31,380
(25,150) 0.92, 1.05, 36 0.92,1.07, 33 092, 1.04, 69 092, 1.05, 75,612
Small 0.93, 1.03, 23 0.93,1.05, 28 0.93,1.02, 51 093, 1.03, 36,303
(20,75) 0.93, 1.01, 33 0.94, 1.03, 37 094, 1.01, 70 093, 1.01, 17,769
(20,100) 0.94,1.01,13 0.94,1.03, 32 094, 1.01, 45 094, 1.01, 31,774
(25,100) 0.93, 1.02, 34 0.93,1.04, 28 093, 1.02, 62 093, 1.02, 34,363
(25,150) 091, 1.02, 27 0.91, 1.05, 65 091, 1.02,92 091, 1.02, 80,222
Medium 0.93,1.02, 27 0.93,1.04, 41 093, 1.02, 68 093, 1.01, 41,302
(20,75) 0.95,1.01,19 0.96,1.01, 50 0.96, 1.00, 69 0.95,1.01, 5,374
(20,100) 0.95, 1.00, 19 0.95,1.01, 66 095, 1.00, 85 095, 1.00, 14,613
(25,100) 0.94, 1.01, 40 0.95,1.01,127 0.95, 1.00, 166 094, 1.01, 25,644
(25,150) 0.94,1.01, 188 0.95,1.03, 165 0.95,1.00, 353 094, 1.01, 43,103
Large 0.95,1.01, 67 0.95,1.02, 102 0.95,1.00, 168 0.95,1.01, 22,184

* LPS, the LP-based strategy performed in steps 2(a)
to 2(c) of the Lagrangian dual optimization procedure.

* LAG +LPS, the whole Lagrangian dual optimiza-
tion procedure, combining the two previous strategies.

* LAG + SUB, the same as strategy LAG, except that
the solution to the single Lagrangian subproblem in
step 1(d) is replaced by a call to an adaptation of the
subgradient method described in Section 3.3, where
both m and g multipliers are adjusted.

Table 4 summarizes the computational results ob-
tained for all instances. Lower and upper bound
GAPs and CPU times in seconds are reported on
average for the four network dimensions (|N|,|A]) =
(20,75),(20,100), (25,100), (25, 150) (each class contains
24 instances), as well as for the 96 instances in each
class, Small (|K| = 25), Medium (|K| = 50), and Large
(IK[ =100).

These results show that all of the strategies generate
similar lower bounds, with a slight edge for the com-
bined approach LAG + LPS. We observed that, for some
instances, LAG produces better lower bounds than LPS,
whereas for other instances, the opposite is true. Thus,
by combining the two strategies, we obtain better overall
lower bounds. Although strategy LAG generates better
upper bounds than LPS on average, the same observa-
tion holds for the upper bounds: no dominance exists
across all instances, which implies that the combina-
tion of the two strategies produces better overall upper
bounds. This can be seen on the average values for some
of the instance classes, for example, Small instances with
size (20,75) for both the lower bound and the upper
bound GAPs and Small instances with size (25,150)
for the upper bound GAP. As shown in column LAG +
SUB, the subgradient method doesnot help improve the
bounds and its computing times are prohibitive. These
results justify solving a single Lagrangian subproblem
instead of a call to the subgradient method in step 1(d)
of the Lagrangian dual optimization procedure.
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Table 5 displays the lower bound GAPs and the
CPU times in seconds to compute the different lower
bounds (excluding the times for upper bound compu-
tations), averaged for each problem class as in Table 4,
for each combination of model and lower bounding
method described in Section 5.2 (with the exception of
BB whose lower bound results are shown in Table 7).

From these results, we draw the following
conclusions:

¢ As expected, formulation BS is weak, producing
lower bound gaps around 25% on average. The B&B
method of CPLEX at the root node reduces these gaps
by 5%-10%, thanks to its preprocessing and cutting-
plane procedures. The extended models, on the other
hand, improve these gaps by 15%—-20%, which shows
the strength of the extended forcing constraints (29).

¢ The Lagrangian dual optimization procedure pro-
vides effective lower bound approximations, indepen-
dently of the formulation. As can be seen from column
ES, the subgradient method provides a tight approxi-
mation (within 1% on average) of the theoretical bound
v(ES) computed by the LP solver of CPLEX. It is also
noteworthy that CPLEX provides only slight improve-
ments (on the order of 1%-2%) by adding its sophisti-
cated preprocessing and cutting-plane features at the
root node (method BB,).

* For the same model, the Lagrangian dual opti-
mization procedure is in general significantly faster
than the LP solver of CPLEX and the difference
in computing times increases with the number of
commodities. In particular, method LD solves the ex-
tended models for Medium and Large instances much
faster than LP. For the same instances, the comput-
ing times for LD are also generally better than those
for BB, except for model EP+ where the CPU times
are similar.

¢ Formulation ES produces gaps around 5%-10%
on average, with better results on Large instances.
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Table 5. Lower Bounds: Lower Bound GAP, CPU

(INI,JA)  Algo BS ES ES+ EP+
(20,75) ID 0750  092,0 0.93,7 0.94, 28
P 0750 0931 0.93, 1 0.93, 65
BB, 0830 0942 0.95,2 095,13
(20,100) LD 074,0  091,0 0.94,9 0.94, 49
P 074,0  092,1 092, 1 0.92, 56
BB, 0840 0942 0.95,3 0.95, 18
(25,100) LD 074,0  092,0 092, 4 0.93, 40
P 074,0  092,1 0.92,2 0.92, 273
BB, 0841 0943 0.95,3 0.95, 25

(25,150) LD 0.70,0 091,1 092,10 0.92, 68
LP 0.70,0 091, 3 092, 4 0.92, 204

BB, 0.79,1 0.92,5 0.94, 8 0.94, 43
Small LD 0.73,0 0.92,0 0.93, 8 0.93, 46
LP 0.73,0 0.92,2 092, 2 0.92, 150
BB, 0.83,1 0.94,3 0.95, 4 0.95, 25
(20,75) LD 0.76,0 092,1 0.93,9 0.94, 68
LP 0.76,0 0.93,3 0.93, 4 0.93, 124
BB, 0.83,1 0.94,5 0.95,7 0.95, 28
(20,100) LD 0.73,0 0.93,0 0.94, 4 0.94, 42

LP 0.73,0 0.94,6 0.94,7 0.94, 228
BB, 0.83,1 0.94,9 095,11 0.96, 39
(25,100) LD 0.70,1 092,1 0.93,9 0.93, 60
LP 0.70,1 0.93,7 0.93, 8 0.93, 433
BB, 0.79,2 093,12 095,16 0.95, 54

(25,150) LD 0.66,1 0.90,2 091, 4 0.91, 90
LP 0.66,1 091,25 0.92, 35 0.92, 1,294
BB, 0.76,3 091,28 0.92, 49 0.93, 140

Medium LD 0.71,1 092,1 0.93,7 0.93, 65
LP 0.71,1 0.93, 10 0.93, 14 0.93, 520
BB, 0.80,2 0.93, 14 0.94,21 0.95, 65

(20,75) LD 0.80,1 0.95,2 0.95,3 0.96, 64

LP 0.80,1 096,12 0.96, 18 0.96, 310
BB, 0.87,1 0.96, 18 0.96, 17 0.96, 54
(20,100) LD 0.78,1 0951 0.95,2 0.95, 72
LP 0.78,1 0.95,24 0.95, 35 0.95, 1,169
BB, 0.82,3 0.96, 34 0.96, 40 0.96, 89

(25,100) LD 0.74,1 0.94,1 0.94,2 0.95, 123

LP 0.74,1 0.95, 39 0.95, 63 0.95, 1,095
BB, 0.80,3 0.95, 54 0.95, 59 0.95, 130
(25,150) LD 0.76,1 0.94,3 0.94,3 0.95, 189
LP 0.76,1 0.95, 67 0.95, 106 0.95, 1,103
BB, 0.81,7 0.95, 81 0.95, 107 0.95, 227
Large LD 0.77,1 0.95,2 0.95,3 0.95, 112
LP 0.77,1 0.95, 36 0.95, 56 0.95, 919

BB, 0.83, 4 0.96, 47 0.96, 56 0.96, 125

Small improvements (on the order of 1%-2%) are
obtained by adding segment-based cut-set inequalities
through formulation ES+. When adding to this last
model the point-based cut-set inequalities, a similar
behavior is observed.

We now compare the upper bounds obtained by the
Lagrangian heuristic method of Section 4, LH, with
those computed by the B&B method of CPLEX, BB,
with a limit of one hour. Table 6 displays three mea-
sures for each class of instances: Nfeas, the number
of instances in the corresponding class for which each
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method-model combination found a feasible solution;
Nopti, the number of instances in the corresponding
class for which each method-model combination pro-
vided a certificate of optimality; CPU, the computing
time in seconds for each method-model combina-
tion. We note that, independently of the model used,
method LH always generates a feasible solution. More-
over, the best solution it generates has never been
shown to be optimal for any of the instances. Hence,
the values of Nfeas and Nopti are easy to interpret for
method LH: for 100% of the instances, LH found feasi-
ble, but nonoptimal solutions.

These results show that, in spite of being the weak-
est model in terms of the quality of its LP relaxation
bound, BS gives the best performance for computing
upper bounds with the B&B method of CPLEX. In par-
ticular, it is the only model for which BB finds feasi-
ble solutions to all instances. By contrast, the strongest
model EP+ identifies a feasible solution within one
hour for only 117 of the 288 instances. Formulations ES
and ES+ show intermediate results, with 252 and 277
instances, respectively, for which they could find feasi-
ble solutions. The performance in terms of CPU times
and number of optimal solutions found are similar: BS
is generally faster than the other models and is able to
prove optimality for a larger number of instances. The
only exception is for Small instances for which model
ES+ is slightly better than both BS and ES, which
indicates that the addition of cut-set inequalities can
help in solving the problem, at least for instances with
few commodities. Overall, these results show that,
although the extended models generate much stronger
lower bounds than the basic model, their size is an
issue for a stand-alone MIP solver like CPLEX and
that decomposition methods must be used to exploit
their strength. Table 6 also shows that the Lagrangian
heuristic is fast, its CPU times being one to two orders
of magnitude smaller than those of the B&B method of
CPLEX.

As a further comparison between BB and LH, Table 7
shows the results obtained with the best method-model
combination for each of the two methods. For BB, as just
seen in Table 6, the best model is BS, whereas for LH,
we selected EP+ as the best model. Indeed, the incre-
mental strategy used when the Lagrangian heuristic is
combined with the Lagrangian dual optimization pro-
cedure (see Section 4.3) guarantees that the upperbound
obtained after solving EP+ (steps 1(d), 2(c), and 3) domi-
nates any other upper bound found during the course of
the Lagrangian heuristic. In practice, we observed that
the upper bound found when solving ES is already very
good, as it is about 1% away from the best feasible solu-
tion found by the Lagrangian heuristic when solving
EP+. Nonetheless, EP+ is to be preferred, as it produces
the best lower and upper bounds, with a modest addi-
tional computational effort, as shown in Table 6. Table 7
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Table 6. Upper Bounds: Nfeas, Nopti, CPU

(N1, |A]) Algo BS ES ES+ EP+
(20,75) BB 24,20, 1,066 24,20, 1,260 24,21, 935 24, 8,3,175
LH 24,0,0 24,0,1 24,0,8 24,0, 30
(20,100) BB 24,18,1,311 24,18, 1,489 24,19, 1,307 24,8,3,222
LH 24,0,0 24,0,0 24,0,9 24,0, 62
(25,100) BB 24,16,1,924 24,13, 2,361 24,15, 2,151 22,0,3,613
LH 24,0,0 24,0,3 24,0,7 24,0, 44
(25,150) BB 24,5,3,103 24,9,2,774 24, 8,2,828 12,0, 3,632
LH 24,0,0 24,0,1 24,0, 10 24,0, 69
Small BB 96,59, 1,851 96, 60, 1,971 96, 63, 1,805 82,16, 3,411
LH 96,0,0 9,0,1 96,0,9 96, 0, 51
(20,75) BB 24,12, 2,099 24,10, 2,545 24,12, 2,295 17,2, 3,584
LH 24,0,0 24,0,2 24,0, 10 24,0, 70
(20,100) BB 24,9,2,492 24,10, 2,554 24,9, 2,509 17,2, 3,578
LH 24,0,0 24,0,1 24,0,5 24,0, 45
(25,100) BB 24, 8,2,914 23,6,2,937 24, 8,3,008 1,0, 3,644
LH 24,0,1 24,0,3 24,0, 11 24,0, 62
(25,150) BB 24,3, 3,274 18,2, 3,419 20, 3, 3,364 0,0,3,730
LH 24,0,1 24,0,3 24,0,5 24,0, 92
Medium BB 96, 32, 2,695 89,28, 2,864 92,32, 2,794 35, 4, 3,634
LH 96,0, 1 96,0,2 9, 0,8 96, 0, 67
(20,75) BB 24, 20, 968 21,12, 2,685 24,15,2,193 0,0, 3,642
LH 24,0,1 24,0,3 24,0,5 24,0, 69
(20,100) BB 24,11,2,337 21, 5,3,382 24, 6, 3,152 0,0, 3,680
LH 24,0,1 24,0,7 24,0,8 24,0, 85
(25,100) BB 24,8,2,742 14,0, 3,642 22,1, 3,597 0,0,3,721
LH 24,0,1 24,0,18 24,0, 19 24,0, 166
(25,150) BB 24,3, 3,385 11,0, 3,648 19,1, 3,662 0,0,3,818
LH 24,0,1 24,0,155 24,0,161 24,0, 353
Large BB 96, 42, 2,358 67,17, 3,339 89,22, 3,151 0,0,3,715
LH 96,0, 1 96, 0, 46 96, 0, 48 96, 0, 168

summarizes the results obtained with the two method-
model combinations, BB-BS and LH-EP+. Three perfor-
mance measures are provided: the lower bound GAP,
the upper bound GAP, and the CPU time in seconds.

These results show that, on Small and Medium in-
stances, the upper bounds obtained by LH are on aver-
age within 2% of the best-known solutions. On Large
instances, the Lagrangian heuristic generally computes
the best-known upper bounds, with BB being 1% away
from them on average, and even 3% away on average on
the largest instances with (25, 150). The computational
effort to obtain such effective upper bounds is reason-
able, as the CPU time is typically on the order of one
minute on all instances. On Large instances with size
(25,150), the computing time is around five minutes
on average. The lower bounds computed by the B&B
of CPLEX are, as expected, better than the Lagrangian
lower bounds, but only slightly so. In particular, for
Small, Medium, and Large instances with size (25, 150),
the two lower bounds are close, and get closer as the
number of commodities increases. Indeed, the final
gaps produced by the Lagrangian heuristic are on aver-
age better for Large instances with size (25,150).
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6. Conclusions
We have considered the piecewise linear integer mul-
ticommodity network flow problem. We have intro-
duced formulations that exploit the integrality of the
flows by using discretization. We have shown that
the basic model obtained by discretization can be
viewed as a particular case of the basic segment-
based formulation introduced in Croxton, Gendron,
and Magnanti (2007). We have strengthened the dis-
cretized models either by adding valid inequalities
derived from cut-set inequalities or by using flow dis-
aggregation techniques, obtaining a model similar to
the so-called extended (segment-based) formulation intro-
duced in Croxton, Gendron, and Magnanti (2007).

When comparing the relative strength of the different
formulations, our main results state the following:

* Discretization provides stronger cut-set inequali-
ties than those obtained from segment-based models.

e Discretization, when combined with flow disag-
gregation, does not improve on the LP relaxation of the
extended segment-based model.

We have exploited these results by deriving a refor-
mulation of the problem that combines the strength



Downloaded from informs.org by [132.204.243.250] on 11 September 2017, at 10:09 . For personal use only, all rights reserved.

648

Gendron and Gouveia: Reformulations by Discretization for PMFI
Transportation Science, 2017, vol. 51, no. 2, pp. 629-649, © 2016 INFORMS

Table 7. Upper Bounds: Lower Bound GAP, Upper Bound
GAF, CPU

(|N], |AD Algo-model
(20,75) BB-BS 1.00, 1.00, 1,066
LH-EP+ 0.94,1.02, 30
(20,100) BB-BS 0.99, 1.00, 1,311
LH-EP+ 0.94,1.02, 62
(25,100) BB-BS 1.00, 1.00, 1,924
LH-EP+ 0.93,1.01,44
(25,150) BB-BS 0.97, 1.00, 3,103
LH-EP+ 0.92,1.04, 69
Small BB-BS 0.99, 1.00, 1,851
LH-EP+ 0.93, 1.02, 51
(20,75) BB-BS 0.99, 1.00, 2,099
LH-EP+ 0.94,1.01,70
(20,100) BB-BS 0.98, 1.00, 2,492
LH-EP+ 0.94,1.01,45
(25,100) BB-BS 0.97, 1.00, 2,914
LH-EP+ 0.93,1.02, 62
(25,150) BB-BS 0.92,1.02, 3,274
LH-EP+ 0.91,1.02,92
Medium BB-BS 0.97, 1.01, 2,695
LH-EP+ 0.93,1.02,68
(20,75) BB-BS 1.00, 1.00, 968
LH-EP+ 0.96, 1.00, 69
(20,100) BB-BS 0.98, 1.00, 2,337
LH-EP+ 0.95, 1.00, 85
(25,100) BB-BS 0.97,1.01, 2,742
LH-EP+ 0.95, 1.00, 166
(25,150) BB-BS 0.95, 1.03, 3,385
LH-EP+ 0.95, 1.00, 353
Large BB-BS 0.98, 1.01, 2,358
LH-EP+ 0.95, 1.00, 168

of both techniques: cut-set inequalities based on dis-
cretization and flow disaggregation with segment-
based variables. To overcome the large size of the
resulting model, we developed an efficient and effec-
tive Lagrangian relaxation method to compute lower
and upper bounds.

Computational experiments on a large set of ran-
domly generated instances allowed us to compare
the relative efficiency of the different modeling alter-
natives (flow disaggregation plus addition of cut-
set inequalities with or without discretization), when
used within the Lagrangian relaxation approach. The
results derived from these experiments show that
the Lagrangian relaxation method is both efficient
and effective. For all instances, it produces lower and
upper bounds in relatively small computing times and
with gaps on the order of 5%-10%. On all instances,
Lagrangian lower bounds are computed in less time
than that required by CPLEX to solve the LP relax-
ation, with similar gaps; moreover, high-quality upper
bounds are obtained in reasonable time, whereas the
B&B method of CPLEX on any of the tested models
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often does not converge to optimality within the one-
hour time limit.

This work opens the way for many research avenues.
The models that we study are generic and include
as special cases a large number of problems with
applications in transportation and logistics, but also
in other areas such as telecommunications and pro-
duction planning. To our knowledge, apart from the
references already cited, no other work on reformu-
lations by discretization has been performed on such
problems. It would be interesting to investigate the
impact of discretization on such problems, as well as
on other problems with a similar structure. The for-
mulations we have introduced involve a large num-
ber of variables and constraints. We handled the large
size of the models by developing Lagrangian relax-
ation methods. It would be interesting to investigate
other approaches, such as column-and-cut generation

(recent examples of such methods on problems similar
to the PMFI include Frangioni and Gendron 2009, 2013;
Gendron and Larose 2014).
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